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Introduction

The use of sentinel species, by associating physio-
logical responses or population dynamics to exter-
nal parameters, has a long tradition in environ-
mental studies (LeBlanc and Bain, 1997; Zelikoff,
1998; Cajaraville et al., 2000; Komar, 2001;
Golden and Rattner, 2003; Blanco and Cooper,
2004; Moore et al., 2004). In its simplest con-
figuration this may correspond to looking for the
presence of biological indicators of environmental
quality (LeBlanc and Bain, 1997) but it can also be
conFigured for specific toxic contaminants (Cajar-
aville et al., 2000) or infectious agents (Komar,
2001). Moreover, after realizing that single gene
diseases are the exception rather than the rule,
the biomedical field is engaged in a gold rush
to find transcriptomic and proteomic markers for
the diagnosis and prognosis of systemic diseases
such as cancer and autoimmune diseases (Chanin
et al., 2004; Devauchelle and Chiocchia, 2004;
Kuo et al., 2004; Li et al., 2004; Khalil and Hill,

2005). Putting the two together and attempting to
use molecular profiles as a sensitive indicator for
the status of sentinel species comes as the logi-
cal next step (Figure 1). However, a number of
serious methodological hurdles remain in the way
of realizing what might otherwise be a straightfor-
ward proposition. Foremost is the unresolved func-
tional interpretation of the transcriptomic signal
itself, particularly when oligonucleotide microar-
ray technologies are used, as different platforms
produce ‘jaw droppingly’ (Marshall, 2004) little
concordance (Tan et al., 2003). cDNA microar-
rays appear to fare better with regard to precision,
albeit they have a reputation of low reproducibility
and are even less concordant with oligonucleotide
microarray results (Woo et al., 2004). Finally, the
calibration of transcriptomic biosensors requires
recourse to advanced, computationally intensive,
pattern recognition algorithms and the collection of
sufficiently representative calibration data (Rhodes
and Chinnaiyan, 2004). Both premises are not
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Figure 1. Universal environmental transcriptomic biosensor concept: expression microarrays probe the transcriptome of
selected sentinel species for calibration, by machine learning, to the target environmental parameters

trivial, as illustrated by the missteps of the inten-
sive search for biomarkers for clinical applica-
tions (Baggerly et al., 2004), an endeavour of
much smaller complexity and with access to ample
resources.

Sentinel species

Although there is a long tradition of using sentinel
species in environmental science, it does not always
follow that the traditional sentinel species are a
good choice for transducing environmental forcing
functions as recognizable changes in their phys-
iology. In particular the use of keystone species
(Brown et al., 2001) is not necessarily effective,
and the choice should instead focus on species
that are physically in contact with media shared

by most of the community. This makes aquatic
or amphibian species natural choices (Gracey and
Cossins, 2003), particularly when they feed off pri-
mary producers, e.g. by filtering them out of the
large volumes of water (Tanguy et al., 2002; Man-
duzio et al., 2004) or by having a life cycle that
puts them in contact with a diversity of niches.
Similarly, different tissues will have different sensi-
tivity to the target environmental parameter, e.g. the
immune system is typically the organ of choice to
detect the presence of toxic contaminants (Zelikoff,
1998).

The use of prokaryotes is for the most part
excluded from consideration, given the labile
nature of their messenger RNA and the diffi-
culty in sampling material from individual species
(Dharmadi and Gonzalez, 2004). But for this,
prokaryotes and microbial communities in general
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might be a promising choice. Examples abound in
the literature where proteomic (Wolf et al., 2003)
or lipidomic (Almeida and Noble, 2000; Batten
and Scow, 2003; Peacock et al., 2004) profiles
from microbial communities were reliably used as
biosensors. This assessment may soon change, as
indicated by the extension of molecular biology
methods usually applied to single organisms or
homogeneous cultures to entire biological commu-
nities (Venter et al., 2004).

Transducing the transcriptomic signal

Ideally, the transcriptomic signal would be both
reproducible and interpretable. The technology has
matured to the point where methodological repro-
ducibility, but not concordance, is achieved by
both cDNA and oligonucleotide microarray tech-
nologies (Tan et al., 2003). Interpretation is a
much harder challenge, as even the most basic
understanding of which gene is being targeted by
a known probe is not certain: the same report
describes how different oligonucleotide microar-
ray platforms will generate signals for the same
sample with very little concordance. This problem
will not prevent the identification of a transcrip-
tomic marker signal, but it will make more dif-
ficult the investigation of its biological basis. In
this context, microarrays are not the only avail-
able transcriptomic profiling technique and devel-
opments in multiplexing PCR-based approaches
may be a promising, and cost-effective, alternative
(Tian et al., 2004).

With regard to array technology, the use of long
coding DNA strands instead of short oligomers
presently holds more potential for probing envi-
ronmental signals for two reasons. First, in spite of
the fact that the number of sequenced genomes is
fast increasing, it still includes very few of the most
promising sentinel aquatic organisms, particularly
as regards invertebrates. Second, cDNA microar-
rays target the transcriptome directly, since they
are manufactured by spotting amplified transcripts,
instead of relying on short oligomers designed to
be collectively specific for the expression of a gene,
which is likely to produce multiple splicing vari-
ants. Therefore, a widely used procedure to probe
the transcriptome for a physiological response to
the environment (including infection) is to isolate
and sequence expressed sequence tags (ESTs) by
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Figure 2. Distribution of expressed sequence tag (EST)
sequences in the dbEST repository of the National
Center for Biotechnology Information between the major
taxonomic groups (pie chart in the background). The plot
in the foreground describes the distribution of numbers
of EST sequences per species. These plots were produced
by downloading the summary files directly from dbEST at:
http://www.ncbi.nlm.nih.gov/dbEST

subtractive hybridization (Snell et al., 2003; Munir
et al., 2004). The pursuit of EST projects is now
commonplace, as reflected by the 367 species for
which there are more than 1000 ESTs described in
GenBank’s dbEST (Figure 2).

Biosensor design and manufacture

The selection of sequences to use as probes relies
on well established procedures that seek to maxi-
mize specificity (hybridization to the desired target
sequence) while minimizing the sensitivity (cross-
hybridization to other unrelated reverse transcribed
RNA sequences). The methodology is fairly well
established (for a comprehensive description, see
Wit and McClure, 2004; Stekel, 2003) and will
not be expanded here beyond recalling that it
relies on a sequence analysis procedure to iden-
tify sequences that are unique and are not prone
to autohybridization. The extent of probe selec-
tion, e.g. the number of probes spotted in the
microarray, has also been the object of study where
a general agreement between the sequence com-
position, contiguity and functional annotation for
probe selection from a EST database could be
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defined (Chen et al., 2004). There is, however,
one consideration worth discussing further — the
hybridization models themselves. In fact, the com-
putational tools used to pursue this selection rely
on a set of over-simplistic approaches to pre-
dict hybridization. Non-specific hybridization (or
cross-hybridization) is known to occur in both
oligonucleotide and cDNA platforms. Several stud-
ies were conducted to model expression intensi-
ties, based on binding kinetics using the physi-
cal properties or oligo composition in Affymetrix
oligonucleotide microarrays (Hekstra et al., 2003;
Held et al., 2003; Zhang et al., 2003) and con-
cluded that univariate models fall short of explain-
ing the complexity apparent in the results. Non-
specific binding (cross-hybridization) is an even
more complex problem for cDNA microarrays
because of the length of the probes (Kothapalli
et al., 2002). The probe sequences spotted on the
arrays are frequently the ESTs collected by sub-
tractive hybridization, which are often not fully
sequenced. Several univariate studies were per-
formed to correlate the hybridization intensities and
sequence characteristics between the probe–target
pair for cDNA microarrays (Evertsz et al., 2001;
Xu et al., 2001; Miller et al., 2002), these stud-
ies reached the same (and expected) conclusion
that sequences sharing a high percentage iden-
tity have a higher chance to cross-hybridize with
each other. However, all these models contain
numerous exceptions that cannot be accommodated
by the univariate analyses. To the author’s best
knowledge, no systematic multivariate predictive
model exists for cDNA microarray hybridization
experiments.

In conclusion, the design of microarrays cur-
rently relies too narrowly on uniparametric models
of the sequence. The recent reporting of appallingly
little concordance between microarray platforms
(Tan et al., 2003) has raised the awareness that
there remain major gaps in the understanding of
the hybridization process and the manufacturing
procedure that need to be better understood. The
overview above focuses on microarray technology
but it is noteworthy that other transcription profil-
ing techniques exist. Again, a good starting point to
consider alternatives is the biomarker identification
for multigenic diseases such as cancer (Ahmed,
2002).

Calibration of the transcriptomic
response

Independently of the transcriptomic profiling
method chosen and the ability to correctly iden-
tify the transcripts targeted, inferring environmental
properties from the transcriptome of one organ-
ism will depend on a profile (multi-parametric)
rather than on the expression of a single gene.
Furthermore, the complexity of processes, biotic
and abiotic, involved will cause that dependency
to be highly non-linear. This scenario is familiar
for the identification of proteomic and transcrip-
tomic clinical biomarkers as well as in the use of
lipidomic microbial biomarkers for environmental
parameters. This combination of multiparametric,
complex, non-linear properties converts the calibra-
tion of the transcriptomic response into an exercise
of pattern recognition.

Pattern recognition for the calibration of tran-
scriptomic biosensors has the particular characteris-
tic that the limiting condition will likely be the rela-
tively small number of parameters when compared
with the number of transcripts probed, particularly
if microarrays are being used. Furthermore, the use
of dimensionality reduction techniques would be
detrimental for the calibration, as those procedures
target the representation of the variability in the
signal, not the variability that is associated with
the target environmental parameters. Consequently,
some form of variable selection, e.g. selection of a
smaller subset of transcriptomic signals, is neces-
sary. In contrast to the situation with microarrays,
when a technique is used that probes a number
of transcripts under the 100 mark (for most desk-
top systems under 30 candidates is a more realistic
scenario), an exhaustive search of the best combi-
nation of parameters is feasible, as we have recently
illustrated for RT-PCR biomarker selection (Mitas
et al., 2005). However, the number of possibili-
ties would be unreasonable for a similar approach
to microarray results. In that case some type of
variable selection procedure is needed. Given the
interdependency between parameters, the variables
selected are likely to be reported as being an unsta-
ble set (Li et al., 2004), an observation that is
apparent even when the much simpler multilogis-
tic regression is applied to mostly non-molecular
parameters (Austin and Tu, 2004).

Several approaches exist that would enable non-
linear pattern recognition, which is also often
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Figure 3. Calibration of the microarray environmental
biosensor is a continuous, web-based procedure. It relies
on a database of microarray profiles (x) and environmental
parameters (y) that is used to maintain an updated machine
learning (artificial neural network, ANN, in this schema)
representation of the association between the two. New
microarray results can be submitted for prediction of the
target parameters and production of predictions creates
an opportunity for further validation, and refinement of
the calibration, by subsequent submission of the observed
outcome, when and if available

described as a machine learning procedure. Among
those, artificial neural networks (Almeida, 2002),
support vector machines (Man et al., 2004) and
Bayesian inference (Ochs et al., 2004; Khalil and
Hill, 2005), are particularly popular. Implicit in
this approach, the machine learning calibration of
microarray environmental biosensors is a contin-
uous procedure that reflects the latest availability
of the data, as described in Figure 3. The appli-
cation of these analytical tools requires a data-
management infrastructure geared for both data
warehousing and model validation specialized to
the target ecosystem. One example is the Marine
Genomics consortium, where the investigators are
focusing their research efforts to develop transcrip-
tomic microarray biosensors for use in the marine
environment (http://marinegenomics.org).
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